首先我们来看下面一组数据集:
 sklearn实现逻辑回归 人工智能

 

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

 前面的x1与x2都表示的是年收入和年龄这两个因素决定的是否买车的结果。

开始代码部分,我们先输入x和y的变量,开始输入数据:

from sklearn import linear_model
X=[[20,3],
   [23,7],
   [31,10],
   [42,13],
   [50,7],
   [60,5]]
Y=[0,
   1,
   1,
   1,
   0,
   0]

拟合逻辑回归模型:

lr=linear_model.LogisticRegression(solver='liblinear')#在新版的sklearn当中只需要指定后面的参数值就不会进行报错啦!
lr.fit(X,Y)

这个时候我们的模型已经拟合好了,现在可以开始进行输出了,随便用一个数据来测试在这个模型下这个人是否买车,以及是否买车的概率:

textX=[[28,8]]
lable=lr.predict(textX)#看它是否有车,1表示有

输出:

array([1])

输出为一,说明这个人已经买车了,下面是输出概率:

#现在输出有车的概率
predict=lr.predict_proba(textX)
predict

输出为:

array([[0.14694811, 0.85305189]])
#前面有两个值,这是因为前面的一个概率预测为0的概率,后面的为概率预测为1的概率

得解也,逻辑回归模型的编程还是十分容易的啦

 

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄