当$x,y\ge0,x+y=2$时求下面式子的最小值:
1)$x+\sqrt{x^2-2x+y^2+1}$
2)$\dfrac{1}{5}x+\sqrt{x^2-2x+y^2+1}$

 MT【327】两道不等式题 随笔
解:1)$P(x,y)$为直线$x+y=2$上一点,点$H$为$P$到$y$轴的投影点,

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

设$A(1,0)$则$A$关于$x+y=2$的对称点$A'(2,1)$

故$x+\sqrt{x^2-2x+y^2+1}=|PH|+|PA|= |PH|+|PA'|\ge|HA'|=2$
2)$\dfrac{1}{5}x+\sqrt{x^2-2x+y^2+1}$
$=\dfrac{1}{5}x+\sqrt{(x^2-2x+y^2+1)(\cos^2\theta+\sin^2\theta)}$
$\ge(\dfrac{1}{5}+\cos\theta)x+y\sin\theta-\cos\theta$
令$\cos\theta=\dfrac{3}{5},\sin\theta=\dfrac{4}{5}$则最小值为1

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄