ML Application example: Photo OCR(机器学习应用举例:照片OCR)

Problem description and pipeline(问题描述与流水线)

问题:

Photo OCR:照片光学字符识别(识别图片中的文字字符信息)

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

流水线:

Text detection(文字检测)----Character segmentation(字符分割)----Character classification(字符分类识别)

Sliding windows(滑动窗)

滑动窗:

通过一定positive和negative的带有标签的数据学习,获得对应物体的识别能力,在被检测图像上从左到右,由上到下以步长step-size/stride滑动窗口,将窗口内的检测结果进行返回。

文字检测:

利用滑动窗分别检测图像中的每一块,将与文字信息相同的加以标记,再将这些返回的图像块变亮,如果左右出现连续变亮的图,即被当做字符区域,如果变亮区域是一条细长的形状,予以舍弃。

字符分割:

在选择的字符区域内进行滑动窗检测,进行分割。

字符分类识别:

监督学习。

GettIng lots of data: Artificial data synthesis(获得大量数据:人工数据合成)

1.添加随机背景,进行简单变形操作,如比例大小、旋转等,使用不同字体;

2.添加噪声与扭曲

机器学习---吴恩达---Week11(机器学习应用举例分析) 随笔 第1张

机器学习---吴恩达---Week11(机器学习应用举例分析) 随笔 第2张

Ceiling analysis: What part of the pipeline to work on next(上限分析:流水线的哪个模块最有改进价值)

机器学习---吴恩达---Week11(机器学习应用举例分析) 随笔 第3张

 

 

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄