目录

Cycle-GAN

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks paper

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

CycleGAN 随笔 第1张

方法

CycleGAN 随笔 第2张

损失

对抗损失 Adversarial loss

\(\mathcal{L}_{GAN}(G,D_Y,X,Y)=\mathbb{E}_{y \backsim p_{data}(y)}[\log D_Y(y)] +\mathbb{E}_{x \backsim p_{data}(x)}[\log(1-D_Y(G(x)))]\)

循环一致性损失 Cycle Consistency Loss

\(\mathcal{L}_{cyc}(G,F)= \mathbb{E}_{x \backsim p_{data}(x)}[\|F(G(x))-x\|_1] +\mathbb{E}_{y \backsim p_{data}(y)}[\|G(F(y))-y\|_1]\)

总损失

\(\mathcal{L}(G,F,D_X,D_Y)=\mathcal{L}_{GAN}(G,D_Y,X,Y) + \mathcal{L}_{GAN}(F,D_X,X,Y)+\lambda\mathcal{L}_{cyc}(G,F)\)

判别器

70 × 70 PatchGANs

评估

AMT

Amazon Mechanical Turk

FCN

The FCN metric evaluates how interpretable the generated
photos are according to an off-the-shelf semantic segmentation algorithm (the fully-convolutional network, FCN)

Semantic segmentation metrics

Cityscapes benchmark

CycleGAN 随笔 第3张

CycleGAN 随笔 第4张

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄