Isaacs, $\textit{Character Theory of Finite Groups}$, Theorem(1.9)

Let $G$ be a finite group and $F$ a field whose characteristic does not divide $|G|$. Then every $F[G]$-module is completely reducible.

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

Pf: Let $V$ be an $F[G]$-module with submodule $W$ and $V=W\oplus U_0$. 

  • $\varphi$ the projection map of $V$ onto $W$ with respect to $U_0$
  • $\vartheta(v)=\frac{1}{|G|}\sum_{g\in G}\varphi(vg)g^{-1}$ and $\vartheta$ is an $F[G]$-homomorphism from $V$ to $W$
  • $W=im~\vartheta$ and $U=\ker~\vartheta$
  • $V=W\oplus U$
扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄