[深度应用]·实战掌握PyTorch图片分类简明教程
[深度应用]·实战掌握PyTorch图片分类简明教程
个人网站--> http://www.yansongsong.cn/
SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。项目GitHub地址--> https://github.com/xiaosongshine/image_classifier_PyTorch/
1.引文
深度学习的比赛中,图片分类是很常见的比赛,同时也是很难取得特别高名次的比赛,因为图片分类已经被大家研究的很透彻,一些开源的网络很容易取得高分。如果大家还掌握不了使用开源的网络进行训练,再慢慢去模型调优,很难取得较好的成绩。
我们在[PyTorch小试牛刀]实战六·准备自己的数据集用于训练讲解了如何制作自己的数据集用于训练,这个教程在此基础上,进行训练与应用。
2.数据介绍
数据 下载地址
这次的实战使用的数据是交通标志数据集,共有62类交通标志。其中训练集数据有4572张照片(每个类别大概七十个),测试数据集有2520张照片(每个类别大概40个)。数据包含两个子目录分别train与test:
为什么还需要测试数据集呢?这个测试数据集不会拿来训练,是用来进行模型的评估与调优。
train与test每个文件夹里又有62个子文件夹,每个类别在同一个文件夹内:
我从中打开一个文件间,把里面图片展示出来:
其中每张照片都类似下面的例子,100*100*3的大小。100是照片的照片的长和宽,3是什么呢?这其实是照片的色彩通道数目,RGB。彩色照片存储在计算机里就是以三维数组的形式。我们送入网络的也是这些数组。
3.网络构建
1.导入Python包,定义一些参数
import torch as t
import torchvision as tv
import os
import time
import numpy as np
from tqdm import tqdm
class DefaultConfigs(object):
data_dir = "./traffic-sign/"
data_list = ["train","test"]
lr = 0.001
epochs = 10
num_classes = 62
image_size = 224
batch_size = 40
channels = 3
gpu = "0"
train_len = 4572
test_len = 2520
use_gpu = t.cuda.is_available()
config = DefaultConfigs()
2.数据准备,采用PyTorch提供的读取方式(具体内容参考[PyTorch小试牛刀]实战六·准备自己的数据集用于训练)
注意一点Train数据需要进行随机裁剪,Test数据不要进行裁剪了
normalize = tv.transforms.Normalize(mean = [0.485, 0.456, 0.406],
std = [0.229, 0.224, 0.225]
)
transform = {
config.data_list[0]:tv.transforms.Compose(
[tv.transforms.Resize([224,224]),tv.transforms.CenterCrop([224,224]),
tv.transforms.ToTensor(),normalize]#tv.transforms.Resize 用于重设图片大小
) ,
config.data_list[1]:tv.transforms.Compose(
[tv.transforms.Resize([224,224]),tv.transforms.ToTensor(),normalize]
)
}
datasets = {
x:tv.datasets.ImageFolder(root = os.path.join(config.data_dir,x),transform=transform[x])
for x in config.data_list
}
dataloader = {
x:t.utils.data.DataLoader(dataset= datasets[x],
batch_size=config.batch_size,
shuffle=True
)
for x in config.data_list
}
3.构建网络模型(使用resnet18进行迁移学习,训练参数为最后一个全连接层 t.nn.Linear(512,num_classes))
def get_model(num_classes):
model = tv.models.resnet18(pretrained=True)
for parma in model.parameters():
parma.requires_grad = False
model.fc = t.nn.Sequential(
t.nn.Dropout(p=0.3),
t.nn.Linear(512,num_classes)
)
return(model)
如果电脑硬件支持,可以把下述代码屏蔽,则训练整个网络,最终准确率会上升,训练数据会变慢。
for parma in model.parameters():
parma.requires_grad = False
模型输出
ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(1): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer2): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer3): Sequential(
(0): BasicBlock(
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(layer4): Sequential(
(0): BasicBlock(
(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(avgpool): AvgPool2d(kernel_size=7, stride=1, padding=0)
(fc): Sequential(
(0): Dropout(p=0.3)
(1): Linear(in_features=512, out_features=62, bias=True)
)
)
4.训练模型(支持自动GPU加速,GPU使用教程参考:[开发技巧]·PyTorch如何使用GPU加速)
def train(epochs):
model = get_model(config.num_classes)
print(model)
loss_f = t.nn.CrossEntropyLoss()
if(config.use_gpu):
model = model.cuda()
loss_f = loss_f.cuda()
opt = t.optim.Adam(model.fc.parameters(),lr = config.lr)
time_start = time.time()
for epoch in range(epochs):
train_loss = []
train_acc = []
test_loss = []
test_acc = []
model.train(True)
print("Epoch {}/{}".format(epoch+1,epochs))
for batch, datas in tqdm(enumerate(iter(dataloader["train"]))):
x,y = datas
if (config.use_gpu):
x,y = x.cuda(),y.cuda()
y_ = model(x)
#print(x.shape,y.shape,y_.shape)
_, pre_y_ = t.max(y_,1)
pre_y = y
#print(y_.shape)
loss = loss_f(y_,pre_y)
#print(y_.shape)
acc = t.sum(pre_y_ == pre_y)
loss.backward()
opt.step()
opt.zero_grad()
if(config.use_gpu):
loss = loss.cpu()
acc = acc.cpu()
train_loss.append(loss.data)
train_acc.append(acc)
#if((batch+1)%5 ==0):
time_end = time.time()
print("Batch {}, Train loss:{:.4f}, Train acc:{:.4f}, Time: {}"\
.format(batch+1,np.mean(train_loss)/config.batch_size,np.mean(train_acc)/config.batch_size,(time_end-time_start)))
time_start = time.time()
model.train(False)
for batch, datas in tqdm(enumerate(iter(dataloader["test"]))):
x,y = datas
if (config.use_gpu):
x,y = x.cuda(),y.cuda()
y_ = model(x)
#print(x.shape,y.shape,y_.shape)
_, pre_y_ = t.max(y_,1)
pre_y = y
#print(y_.shape)
loss = loss_f(y_,pre_y)
acc = t.sum(pre_y_ == pre_y)
if(config.use_gpu):
loss = loss.cpu()
acc = acc.cpu()
test_loss.append(loss.data)
test_acc.append(acc)
print("Batch {}, Test loss:{:.4f}, Test acc:{:.4f}".format(batch+1,np.mean(test_loss)/config.batch_size,np.mean(test_acc)/config.batch_size))
t.save(model,str(epoch+1)+"ttmodel.pkl")
if __name__ == "__main__":
train(config.epochs)
训练结果如下:
def train(epochs):
model = get_model(config.num_classes)
print(model)
loss_f = t.nn.CrossEntropyLoss()
if(config.use_gpu):
model = model.cuda()
loss_f = loss_f.cuda()
opt = t.optim.Adam(model.fc.parameters(),lr = config.lr)
time_start = time.time()
for epoch in range(epochs):
train_loss = []
train_acc = []
test_loss = []
test_acc = []
model.train(True)
print("Epoch {}/{}".format(epoch+1,epochs))
for batch, datas in tqdm(enumerate(iter(dataloader["train"]))):
x,y = datas
if (config.use_gpu):
x,y = x.cuda(),y.cuda()
y_ = model(x)
#print(x.shape,y.shape,y_.shape)
_, pre_y_ = t.max(y_,1)
pre_y = y
#print(y_.shape)
loss = loss_f(y_,pre_y)
#print(y_.shape)
acc = t.sum(pre_y_ == pre_y)
loss.backward()
opt.step()
opt.zero_grad()
if(config.use_gpu):
loss = loss.cpu()
acc = acc.cpu()
train_loss.append(loss.data)
train_acc.append(acc)
#if((batch+1)%5 ==0):
time_end = time.time()
print("Batch {}, Train loss:{:.4f}, Train acc:{:.4f}, Time: {}"\
.format(batch+1,np.mean(train_loss)/config.batch_size,np.mean(train_acc)/config.batch_size,(time_end-time_start)))
time_start = time.time()
model.train(False)
for batch, datas in tqdm(enumerate(iter(dataloader["test"]))):
x,y = datas
if (config.use_gpu):
x,y = x.cuda(),y.cuda()
y_ = model(x)
#print(x.shape,y.shape,y_.shape)
_, pre_y_ = t.max(y_,1)
pre_y = y
#print(y_.shape)
loss = loss_f(y_,pre_y)
acc = t.sum(pre_y_ == pre_y)
if(config.use_gpu):
loss = loss.cpu()
acc = acc.cpu()
test_loss.append(loss.data)
test_acc.append(acc)
print("Batch {}, Test loss:{:.4f}, Test acc:{:.4f}".format(batch+1,np.mean(test_loss)/config.batch_size,np.mean(test_acc)/config.batch_size))
t.save(model,str(epoch+1)+"ttmodel.pkl")
if __name__ == "__main__":
train(config.epochs)
训练10个Epoch,测试集准确率可以到达0.86,已经达到不错效果。通过修改参数,增加训练,可以达到更高的准确率。

