题意:
\(n\)个石头,每个石头有权值,可以给它们染'R', 'G', 'B'三种颜色,如下定义一种染色方案为合法方案:

  • 所有石头都染上了一种颜色
  • \(R, G, B\)为染了'R', 染了'G', 染了'B'的所有石头的权值和,存在一个三角形的三变为\(R, G, B\)
    求合法方案数模\(998244353\)

思路:
考虑总方案数为\(3^n\),我们考虑怎么求出不合法的方案数。令\(dp[i][j]\)表示到第\(i\)个石头,两条短边和为\(j\)的方案数
但是我们注意到,如果\(sum\)是偶数的话,那么:

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。
  1. \(R = B = \frac{sum}{2}\)\(B = R = \frac{sum}{2}\)
  2. \(R = G = \frac{sum}{2}\)\(G = R = \frac{sum}{2}\)
  3. \(B = G = \frac{sum}{2}\)\(G = B = \frac{sum}{2}\)
    贡献会重复算一遍,再\(dp\)一次,删掉一份贡献即可。

代码:

#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define N 310
const ll p = 998244353; 
int n, a[N];
ll f[N * N], g[N * N], all;

int main() {
    while (scanf("%d", &n) != EOF) {
        ll sum = 0, mid;
        all = 1;
        for (int i = 1; i <= n; ++i) {
            scanf("%d", a + i);
            sum += a[i];    
            all = (all * 3) % p; 
        }
        mid = sum / 2;  
        memset(f, 0, sizeof f);  
        f[0] = 1;   
        for (int i = 1; i <= n; ++i) {
            for (int j = sum - a[i]; j >= 0; --j) {
                f[j + a[i]] = (f[j + a[i]] + f[j] * 2 % p) % p;  
            }        
        }
        
        ll res = 0; 
        for (int i = 0; i <= mid; ++i) {      
            res = (res + f[i]) % p;
        }
        if (sum % 2 == 0) {
            memset(g, 0, sizeof g);
            g[0] = 1;
            for (int i = 1; i <= n; ++i) {
                for (int j = sum - a[i]; j >= 0; --j) {
                    g[j + a[i]] = (g[j + a[i]] + g[j]) % p;
                }
            }
            res = (res - g[mid] + p) % p;    
        }
        printf("%lld\n", (all - (res * 3) % p + p) % p); 
    }
    return 0;
}
扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄