Solving for geodesic is a classical problem in the calculus of variation.

In Grassmann manifold, there exists relatively simple method of computing geodesics using the relatively simple method bsed on the SVD.

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

计算Grassmannian Geodesic:

Given 2 points on grassmann manifold, $X,Y\in \mathcal{G}\left( D,p \right)$  may be parametrized by a function $\varPhi \left( t \right) :\left[ 0,1 \right] \rightarrow \mathcal{G}\left( D,p \right)$, where $\varPhi \left( 0 \right)=X$ and  $\varPhi \left( 1 \right)=Y$. The parameter $t\in\left[0,1\right]$ controls the location on the geodesic on Grassmannian.

First, 

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄