python版本 3.7.0 
Python Face Detect Offline 随笔 第1张

1、 安装 cmake

pip install cmake 
Python Face Detect Offline 随笔 第2张

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

2、安装 boost

pip install boost 
Python Face Detect Offline 随笔 第3张

3、安装 dlib

pip install dlib 
Python Face Detect Offline 随笔 第4张

4、安装 face_recognition

pip install face_recognition 
Python Face Detect Offline 随笔 第5张

5、验证

face_recognition 本地模型路径 要识别图片路径 
输出:文件名 识别的人名 
Python Face Detect Offline 随笔 第6张

注意:文件名以人名命名 
Python Face Detect Offline 随笔 第7张

6、寻找人脸位置

face_detection “路径” 
输出:人脸像素坐标 
Python Face Detect Offline 随笔 第8张

7、调整灵敏度

face_recognition –tolerance 灵敏度 本地模型路径 要识别图片路径 
注:默认0.6,识别度越低识别难度越高 
Python Face Detect Offline 随笔 第9张

8、计算每次面部距离

face_recognition –show-distance true 本地模型路径 要识别图片路径 
Python Face Detect Offline 随笔 第10张

9、只是想知道每张照片中人物的姓名,却不关心文件名,可以这样做:

face_recognition 本地模型路径 要识别图片路径 | cut -d ‘,’ -f2

Python Face Detect Offline 随笔 第11张

10、加速识别

face_recognition –cpus 使用内核数 本地模型路径 要识别图片路径 
使用四核识别: 
face_recognition –cpus 4 本地模型路径 要识别图片路径 
Python Face Detect Offline 随笔 第12张 
使用全部内核识别: 
face_recognition –cpus -1 本地模型路径 要识别图片路径

Python Face Detect Offline 随笔 第13张

11、自动查找图像中的所有面孔

import face_recognition

image = face_recognition.load_image_file(“吴京.jpg”) 
face_locations = face_recognition.face_locations(image)

 

import face_recognition
import cv2
import numpy as np

# This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
#   1. Process each video frame at 1/4 resolution (though still display it at full resolution)
#   2. Only detect faces in every other frame of video.

# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.

# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)

# Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]

# Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("biden.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0]

# Create arrays of known face encodings and their names
known_face_encodings = [
    obama_face_encoding,
    biden_face_encoding
]
known_face_names = [
    "Barack Obama",
    "Joe Biden"
]

# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True

while True:
    # Grab a single frame of video
    ret, frame = video_capture.read()

    # Resize frame of video to 1/4 size for faster face recognition processing
    small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

    # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
    rgb_small_frame = small_frame[:, :, ::-1]

    # Only process every other frame of video to save time
    if process_this_frame:
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(rgb_small_frame)
        face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)

        face_names = []
        for face_encoding in face_encodings:
            # See if the face is a match for the known face(s)
            matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
            name = "Unknown"

            # # If a match was found in known_face_encodings, just use the first one.
            # if True in matches:
            #     first_match_index = matches.index(True)
            #     name = known_face_names[first_match_index]

            # Or instead, use the known face with the smallest distance to the new face
            face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
            best_match_index = np.argmin(face_distances)
            if matches[best_match_index]:
                name = known_face_names[best_match_index]

            face_names.append(name)

    process_this_frame = not process_this_frame


    # Display the results
    for (top, right, bottom, left), name in zip(face_locations, face_names):
        # Scale back up face locations since the frame we detected in was scaled to 1/4 size
        top *= 4
        right *= 4
        bottom *= 4
        left *= 4

        # Draw a box around the face
        cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

        # Draw a label with a name below the face
        cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
        font = cv2.FONT_HERSHEY_DUPLEX
        cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)

    # Display the resulting image
    cv2.imshow('Video', frame)

    # Hit 'q' on the keyboard to quit!
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()

  

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄