BZOJ5279: [Usaco2018 Open]Disruption
题目大意:给你一棵n个节点的树,这n条边称为原边,另给出m条带权值的额外边,求删去每条原边后通过给出的m额外条边变回一棵树的最小价值。
题解:
看完题面以为是Tarjan连通性之类的题目,冷静分析后想到是树链剖分,自己真是Too young too simple。
首先将这棵树进行树链剖分,对于每条额外边x-y,可以作为原树上x-y的路径上的任意一条边删去时的答案,所以路径更新最小值即可。
树链剖分+线段树维护区间最小值,边权转点权的技巧直接把这条边的权值赋到儿子节点上,查找更新时不找LCA即可。。。
输出要求是按原边的顺序,这里用了一个小技巧,大家手模感性理解一下就好了。
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<string> #include<map> #include<iostream> #include<queue> using namespace std; #define isNum(a) (a>='0'&&a<='9') #define SP putchar(' ') #define EL putchar('\n') #define File(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout) template<class T1>void read(T1 &r_e_a_d); template<class T1>void write(T1 w_r_i_t_e); const int N=50005; int n,m,len=1,x,y,z,a[N],head[N],idn[N],idw[N]; struct EDGE{ int to,next,id; }edge[N<<1]; void add(int x,int y,int d){ ++len; edge[len].to=y;edge[len].next=head[x];edge[len].id=d;head[x]=len; } int dep[N],son[N],siz[N],fa[N]; void dfs1(int u,int father){ dep[u]=dep[father]+1;fa[u]=father;siz[u]=1; for (register int i=head[u];i;i=edge[i].next){ int v=edge[i].to; if (v!=father){ dfs1(v,u);siz[u]+=siz[v]; if (son[u]==-1||siz[v]>siz[son[u]]) son[u]=v; idn[v]=edge[i].id; } } } int tot,top[N],dfn[N],seg[N]; void dfs2(int u,int tp){ top[u]=tp; dfn[u]=++tot; seg[dfn[u]]=u; if (son[u]==-1) return ; dfs2(son[u],tp); for (register int i=head[u];i;i=edge[i].next){ int v=edge[i].to; if (v!=fa[u]&&v!=son[u]){ dfs2(v,v); } } } int tree[50005<<2],lazy[50005<<2]; void build(int k,int l,int r){ tree[k]=lazy[k]=1<<30; if (l==r) return ; int mid=l+r>>1; build(k<<1,l,mid);build(k<<1|1,mid+1,r); } void pushdown(int k){ tree[k<<1]=min(tree[k<<1],lazy[k]); tree[k<<1|1]=min(tree[k<<1|1],lazy[k]); lazy[k<<1]=min(lazy[k],lazy[k<<1]); lazy[k<<1|1]=min(lazy[k],lazy[k<<1|1]); lazy[k]=1<<30; } void modify(int k,int l,int r,int x,int y,int z){ if (x<=l&&r<=y){ tree[k]=min(tree[k],z); lazy[k]=min(lazy[k],z); return ; } if (lazy[k]!=1<<30) pushdown(k); int mid=l+r>>1; if (x<=mid) modify(k<<1,l,mid,x,y,z); if (mid<y) modify(k<<1|1,mid+1,r,x,y,z); tree[k]=min(tree[k<<1],tree[k<<1|1]); } int query(int k,int l,int r,int x,int y){ if (x<=l&&r<=y){ return tree[k]; } if (lazy[k]!=1<<30) pushdown(k); int qwq=1<<30,mid=l+r>>1; if (x<=mid) qwq=min(qwq,query(k<<1,l,mid,x,y)); if (mid<y) qwq=min(qwq,query(k<<1|1,mid+1,r,x,y)); return qwq; } void solve(int x,int y,int z){ while (top[x]!=top[y]){ if (dep[top[x]]<dep[top[y]]) x^=y^=x^=y; modify(1,1,n,dfn[top[x]],dfn[x],z); x=fa[top[x]]; } if (dep[x]<dep[y]) x^=y^=x^=y; modify(1,1,n,dfn[y]+1,dfn[x],z); } int main(){ memset (son,-1,sizeof (son)); read(n);read(m); for (register int i=1;i<n;++i){ read(x);read(y); add(x,y,i);add(y,x,i); } dfs1(1,0); dfs2(1,1); build(1,1,n); for (register int i=1;i<=m;++i){ read(x);read(y);read(z); solve(x,y,z); } for (register int i=2;i<=n;++i){ idw[idn[i]]=i; } for (register int i=1;i<n;++i){ int ans=query(1,1,n,dfn[idw[i]],dfn[idw[i]]); if (ans==1<<30) printf ("-1\n"); else write(ans),EL; } return 0; } template<class T1>void read(T1 &r_e_a_d){ T1 k=0; char ch=getchar(); int flag=1; while(!isNum(ch)){ if(ch=='-'){ flag=-1; } ch=getchar(); } while(isNum(ch)){ k=((k<<1)+(k<<3)+ch-'0'); ch=getchar(); } r_e_a_d=flag*k; } template<class T1>void write(T1 w_r_i_t_e){ if(w_r_i_t_e<0){ putchar('-'); write(-w_r_i_t_e); }else{ if(w_r_i_t_e<10){ putchar(w_r_i_t_e+'0'); }else{ write(w_r_i_t_e/10); putchar((w_r_i_t_e%10)+'0'); } } }
SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

更多精彩