TensorFlow笔记五:将cifar10数据文件复原成图片格式
cifar10数据集(http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz)源格式是数据文件,因为训练需要转换成图片格式
转换代码:
SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。注意文件路径改成自己的文件路径,train文件夹需要自己建,等待转换完成
from scipy.misc import imsave import numpy as np # 解压 返回解压后的字典 def unpickle(file): import pickle as pk fo = open(file, 'rb') dict = pk.load(fo,encoding='iso-8859-1') fo.close() return dict # 生成训练集图片 for j in range(1, 6): dataName = "cifar-10-python/cifar-10-batches-py/data_batch_" + str(j) # 读取当前目录下的data_batch1~5文件。 Xtr = unpickle(dataName) print (dataName + " is loading...") for i in range(0, 10000): img = np.reshape(Xtr['data'][i], (3, 32, 32)) # Xtr['data']为图片二进制数据 img = img.transpose(1, 2, 0) # 读取image picName = 'train/' + str(Xtr['labels'][i]) + '_' + str(i + (j - 1)*10000) + '.jpg' # Xtr['labels']为图片的标签,值范围0-9,本文中,train文件夹需要存在,并与脚本文件在同一目录下。 imsave(picName, img) print (dataName + " loaded.") print ("test_batch is loading...") # 生成测试集图片 testXtr = unpickle("test_batch") for i in range(0, 10000): img = np.reshape(testXtr['data'][i], (3, 32, 32)) img = img.transpose(1, 2, 0) picName = 'test/' + str(testXtr['labels'][i]) + '_' + str(i) + '.jpg' imsave(picName, img) print ("test_batch loaded.")

更多精彩