Isaacs, $\textit{Character Theory of Finite Groups}$, Corollary(2.9)

Let $\mathfrak{X}$ and $\mathfrak{Y}$ be $\mathbb{C}$-representations of a group. Then $\mathfrak{X}$ and $\mathfrak{Y}$ are similar iff they afford equal characters.

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

Pf:

  • $(\Rightarrow)$ Obviously by Lemma(2.3).
  •  $(\Leftarrow)$ $\mathfrak{X}$ and $\mathfrak{Y}$ correspond to $V$ and $W$, respectively. Then $\mathfrak{X}$ affords $\sum n_{M_i}(V)\chi_i$ and $\mathfrak{Y}$ affords $\sum n_{M_i}(W)\chi_i$.

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄