Isaacs, $\textit{Character Theory of Finite Groups}$, Lemma(2.10)

If $g\in G$ and $g\neq1$, then $\rho(g)=0.$ Also $\rho(1)=|G|$.

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

Pf: Obviously.

Isaacs, $\textit{Character Theory of Finite Groups}$, Lemma(2.11)

$$\rho=\sum_{i=1}^k\chi_i(1)\chi_i.$$

Pf:

  • $\mathbb{C}[G]=\bigoplus_{M_i\in\mathcal{M}(\mathbb{C}[G])}M_i(\mathbb{C}[G])$.
  • $n_{M_i}(\mathbb{C}[G])=dim(M_i)=\chi_i(1)$

 

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄