基础的 sparkSQL操作
spark连接mysql操作 数据库jdbc 连接封装 package test.com import org.apache.spark.sql.{DataFrame, SparkSession} /** * Created by sx on 2018/5/31. */ object JDBC_db { val url = "jdbc:mysql://ip:3306/db" val driver = "com.mysql.jdbc.Driver" val user = "root" val password = "root" def count(sparkSession: SparkSession, table: String): DataFrame = { val sparkDF = sparkSession.read .format("jdbc") .option("url", s"${url}") .option("driver", s"${driver}") .option("dbtable", table) .option("user", s"${user}") .option("password", s"${password}") .load() return sparkDF } } 创建类连接 import java.util.logging import org.apache.log4j.{Level, Logger} import org.apache.spark.sql.SparkSession import test.com.JDBC_db object JDBC_DB { System.setProperty("hadoop.home.dir", "D:\\hadoop\\hadoop-common-2.2.0-bin-master") Logger.getLogger("org").setLevel(Level.WARN) def main(args: Array[String]): Unit = { val spark = SparkSession.builder().master("local").getOrCreate() val sparkDF = JDBC_db.count(spark, "test1") sparkDF.createOrReplaceTempView("aa") sparkDF.show() val sparkDF2 = JDBC_db.count(spark, "test2") sparkDF2.createOrReplaceTempView("bb") sparkDF2.show() spark.sql("select * from aa union select * from bb").show() } }

更多精彩