A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

Now consider if some obstacles are added to the grids. How many unique paths would there be?

 (DP 线性DP 递推) leetcode 63. Unique Paths II 随笔

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

Note: m and n will be at most 100.

Example 1:

Input:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right

=================================================================================

这个是leetcode 62. Unique Paths的拓展题。其中不同点就是这个题有障碍。所以,面对这个障碍是要避开。

C++代码:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if(obstacleGrid[0][0] == 1 || obstacleGrid.size() == 0 || obstacleGrid[0].size() == 0) return 0;   //如果出发的贷方有障碍,当然不能出发了。
        int m = obstacleGrid.size(),n = obstacleGrid[0].size();
        vector<vector<long> > dp(m+1,vector<long>(n+1,0));
        for(int i = 0; i < m; i++){
            if(obstacleGrid[i][0] == 1)
                break;
            dp[i][0] = 1;
        }
        for(int j = 0; j < n; j++){
            if(obstacleGrid[0][j] == 1)
                break;
            dp[0][j] = 1;
        }
        for(int i = 1; i < m; i++){
            for(int j = 1; j < n; j++){
                if(obstacleGrid[i][j] == 1)
                    continue;
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
};

 

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄