For me the easiest way was exporting LabelEncoder as .pkl file for each column. You have to export the encoder for each column after using the fit_transform() function

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

For example

from sklearn.preprocessing import LabelEncoder
import pickle
import pandas as pd
df_train = pd.read_csv('traing_data.csv')
le = LabelEncoder()    
df_train['Departure'] = le.fit_transform(df_train['Departure'])
#exporting the departure encoder
output = open('Departure_encoder.pkl', 'wb')
pickle.dump(le, output)
output.close()

Then in the testing project, you can load the LabelEncoder object and apply transform() function directly

from sklearn.preprocessing import LabelEncoder
import pandas as pd
df_test = pd.read_csv('testing_data.csv')
#load the encoder file
import pickle 
pkl_file = open('Departure_encoder.pkl', 'rb')
le_departure = pickle.load(pkl_file) 
pkl_file.close()
df_test['Departure'] = le_departure.transform(df_test['Departure'])
扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄