版权声明:本文为博主原创文章。未经博主同意不得转载。

https://blog.csdn.net/u011368821/article/details/25129835

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

sched.c sched.h 代码分析笔记

首先上header file

sched.h

 #ifndef _SCHED_H #define _SCHED_H #define HZ 100 #define NR_TASKS 64 #define TASK_SIZE 0x04000000 #define LIBRARY_SIZE 0x00400000 #if (TASK_SIZE & 0x3fffff) #error "TASK_SIZE must be multiple of 4M" #endif #if (LIBRARY_SIZE & 0x3fffff) #error "LIBRARY_SIZE must be a multiple of 4M" #endif #if (LIBRARY_SIZE >= (TASK_SIZE/2)) #error "LIBRARY_SIZE too damn big!" #endif #if (((TASK_SIZE>>16)*NR_TASKS) != 0x10000) #error "TASK_SIZE*NR_TASKS must be 4GB" #endif #define LIBRARY_OFFSET (TASK_SIZE - LIBRARY_SIZE) #define CT_TO_SECS(x) ((x) / HZ) #define CT_TO_USECS(x) (((x) % HZ) * 1000000/HZ) #define FIRST_TASK task[0] #define LAST_TASK task[NR_TASKS-1] #include <linux/head.h> #include <linux/fs.h> #include <linux/mm.h> #include <sys/param.h> #include <sys/time.h> #include <sys/resource.h> #include <signal.h> #if (NR_OPEN > 32) #error "Currently the close-on-exec-flags and select masks are in one long, max 32 files/proc" #endif #define TASK_RUNNING 0 #define TASK_INTERRUPTIBLE 1 #define TASK_UNINTERRUPTIBLE 2 #define TASK_ZOMBIE 3 #define TASK_STOPPED 4 #ifndef NULL #define NULL ((void *) 0) #endif extern int copy_page_tables(unsigned long from, unsigned long to, long size); extern int free_page_tables(unsigned long from, unsigned long size); extern void sched_init(void); extern void schedule(void); extern void trap_init(void); extern void panic(const char * str); extern int tty_write(unsigned minor,char * buf,int count); typedef int (*fn_ptr)(); struct i387_struct { long cwd; long swd; long twd; long fip; long fcs; long foo; long fos; long st_space[20]; /* 8*10 bytes for each FP-reg = 80 bytes */ }; struct tss_struct { long back_link; /* 16 high bits zero */ long esp0; long ss0; /* 16 high bits zero */ long esp1; long ss1; /* 16 high bits zero */ long esp2; long ss2; /* 16 high bits zero */ long cr3; long eip; long eflags; long eax,ecx,edx,ebx; long esp; long ebp; long esi; long edi; long es; /* 16 high bits zero */ long cs; /* 16 high bits zero */ long ss; /* 16 high bits zero */ long ds; /* 16 high bits zero */ long fs; /* 16 high bits zero */ long gs; /* 16 high bits zero */ long ldt; /* 16 high bits zero */ long trace_bitmap; /* bits: trace 0, bitmap 16-31 */ struct i387_struct i387; }; struct task_struct { /* these are hardcoded - don't touch */ long state; /* -1 unrunnable, 0 runnable, >0 stopped */ long counter; long priority; long signal; struct sigaction sigaction[32]; long blocked; /* bitmap of masked signals */ /* various fields */ int exit_code; unsigned long start_code,end_code,end_data,brk,start_stack; long pid,pgrp,session,leader; int groups[NGROUPS]; /* * pointers to parent process, youngest child, younger sibling, * older sibling, respectively. (p->father can be replaced with * p->p_pptr->pid) */ struct task_struct *p_pptr, *p_cptr, *p_ysptr, *p_osptr; unsigned short uid,euid,suid; unsigned short gid,egid,sgid; unsigned long timeout,alarm; long utime,stime,cutime,cstime,start_time; struct rlimit rlim[RLIM_NLIMITS]; unsigned int flags; /* per process flags, defined below */ unsigned short used_math; /* file system info */ int tty; /* -1 if no tty, so it must be signed */ unsigned short umask; struct m_inode * pwd; struct m_inode * root; struct m_inode * executable; struct m_inode * library; unsigned long close_on_exec; struct file * filp[NR_OPEN]; /* ldt for this task 0 - zero 1 - cs 2 - ds&ss */ struct desc_struct ldt[3]; /* tss for this task */ struct tss_struct tss; }; /* * Per process flags */ #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ /* Not implemented yet, only for 486*/ /* * INIT_TASK is used to set up the first task table, touch at * your own risk!. Base=0, limit=0x9ffff (=640kB) */ #define INIT_TASK \ /* state etc */ { 0,15,15, \ /* signals */ 0,{{},},0, \ /* ec,brk... */ 0,0,0,0,0,0, \ /* pid etc.. */ 0,0,0,0, \ /* suppl grps*/ {NOGROUP,}, \ /* proc links*/ &init_task.task,0,0,0, \ /* uid etc */ 0,0,0,0,0,0, \ /* timeout */ 0,0,0,0,0,0,0, \ /* rlimits */ { {0x7fffffff, 0x7fffffff}, {0x7fffffff, 0x7fffffff}, \ {0x7fffffff, 0x7fffffff}, {0x7fffffff, 0x7fffffff}, \ {0x7fffffff, 0x7fffffff}, {0x7fffffff, 0x7fffffff}}, \ /* flags */ 0, \ /* math */ 0, \ /* fs info */ -1,0022,NULL,NULL,NULL,NULL,0, \ /* filp */ {NULL,}, \ { \ {0,0}, \ /* ldt */ {0x9f,0xc0fa00}, \ {0x9f,0xc0f200}, \ }, \ /*tss*/ {0,PAGE_SIZE+(long)&init_task,0x10,0,0,0,0,(long)&pg_dir,\ 0,0,0,0,0,0,0,0, \ 0,0,0x17,0x17,0x17,0x17,0x17,0x17, \ _LDT(0),0x80000000, \ {} \ }, \ } extern struct task_struct *task[NR_TASKS]; extern struct task_struct *last_task_used_math; extern struct task_struct *current; extern unsigned long volatile jiffies; extern unsigned long startup_time; extern int jiffies_offset; #define CURRENT_TIME (startup_time+(jiffies+jiffies_offset)/HZ) extern void add_timer(long jiffies, void (*fn)(void)); extern void sleep_on(struct task_struct ** p); extern void interruptible_sleep_on(struct task_struct ** p); extern void wake_up(struct task_struct ** p); extern int in_group_p(gid_t grp); /* * Entry into gdt where to find first TSS. 0-nul, 1-cs, 2-ds, 3-syscall * 4-TSS0, 5-LDT0, 6-TSS1 etc ... */ #define FIRST_TSS_ENTRY 4 #define FIRST_LDT_ENTRY (FIRST_TSS_ENTRY+1) #define _TSS(n) ((((unsigned long) n)<<4)+(FIRST_TSS_ENTRY<<3)) #define _LDT(n) ((((unsigned long) n)<<4)+(FIRST_LDT_ENTRY<<3)) #define ltr(n) __asm__("ltr %%ax"::"a" (_TSS(n))) #define lldt(n) __asm__("lldt %%ax"::"a" (_LDT(n))) #define str(n) \ __asm__("str %%ax\n\t" \ "subl %2,%%eax\n\t" \ "shrl $4,%%eax" \ :"=a" (n) \ :"a" (0),"i" (FIRST_TSS_ENTRY<<3)) /* * switch_to(n) should switch tasks to task nr n, first * checking that n isn't the current task, in which case it does nothing. * This also clears the TS-flag if the task we switched to has used * tha math co-processor latest. */ #define switch_to(n) {\ struct {long a,b;} __tmp; \ __asm__("cmpl %%ecx,_current\n\t" \ "je 1f\n\t" \ "movw %%dx,%1\n\t" \ "xchgl %%ecx,_current\n\t" \ "ljmp %0\n\t" \ "cmpl %%ecx,_last_task_used_math\n\t" \ "jne 1f\n\t" \ "clts\n" \ "1:" \ ::"m" (*&__tmp.a),"m" (*&__tmp.b), \ "d" (_TSS(n)),"c" ((long) task[n])); \ } #define PAGE_ALIGN(n) (((n)+0xfff)&0xfffff000) #define _set_base(addr,base) \ __asm__("movw %%dx,%0\n\t" \ "rorl $16,%%edx\n\t" \ "movb %%dl,%1\n\t" \ "movb %%dh,%2" \ ::"m" (*((addr)+2)), \ "m" (*((addr)+4)), \ "m" (*((addr)+7)), \ "d" (base) \ :"dx") #define _set_limit(addr,limit) \ __asm__("movw %%dx,%0\n\t" \ "rorl $16,%%edx\n\t" \ "movb %1,%%dh\n\t" \ "andb $0xf0,%%dh\n\t" \ "orb %%dh,%%dl\n\t" \ "movb %%dl,%1" \ ::"m" (*(addr)), \ "m" (*((addr)+6)), \ "d" (limit) \ :"dx") #define set_base(ldt,base) _set_base( ((char *)&(ldt)) , base ) #define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , (limit-1)>>12 ) #define _get_base(addr) ({\ unsigned long __base; \ __asm__("movb %3,%%dh\n\t" \ "movb %2,%%dl\n\t" \ "shll $16,%%edx\n\t" \ "movw %1,%%dx" \ :"=d" (__base) \ :"m" (*((addr)+2)), \ "m" (*((addr)+4)), \ "m" (*((addr)+7))); \ __base;}) #define get_base(ldt) _get_base( ((char *)&(ldt)) ) #define get_limit(segment) ({ \ unsigned long __limit; \ __asm__("lsll %1,%0\n\tincl %0":"=r" (__limit):"r" (segment)); \ __limit;}) #endif


对于_TSS 和 _LDT两个宏定义

#define FIRST_TSS_ENTRY 4 #define FIRST_LDT_ENTRY (FIRST_TSS_ENTRY+1) #define _TSS(n) ((((unsigned long) n)<<4)+(FIRST_TSS_ENTRY<<3)) #define _LDT(n) ((((unsigned long) n)<<4)+(FIRST_LDT_ENTRY<<3))
TSS是第五个(IDT是第一个) ,每一个描写叙述符号占8byte ,于是有 FIRST_TSS_ENRTY<<3


《linux 内核全然剖析》sched.c sched.h 代码分析笔记 随笔 第1张






            每一个任务都有两个堆栈。分别用于用户态和内核态程序的执行,而且分别称为用户态堆栈和内核态堆栈。处于不同的CPU特权级中。这两个堆栈之间的主要差别在于任务的内核态堆栈非常小,所保存的数量最多不能超过4096-任务数据结构块个字节,大约为3K。而任务的用户态堆栈却能够在用户的64M空间内延伸。


《linux 内核全然剖析》sched.c sched.h 代码分析笔记 随笔 第2张


show_task

 void show_task(int nr,struct task_struct * p)//显示p指向的nr号进程的相关信息 { int i,j = 4096-sizeof(struct task_struct);//j记录了任务数据结构之后的堆栈空间大小 printk("%d: pid=%d, state=%d, father=%d, child=%d, ",nr,p->pid, p->state, p->p_pptr->pid, p->p_cptr ? p->p_cptr->pid : -1);//打印关于p指向进程的各种信息 i=0; while (i<j && !((char *)(p+1))[i])//非常巧妙的计算了任务数据结构之后的空字节(数据内容为0)的大小 i++; printk("%d/%d chars free in kstack\n\r",i,j);//内核栈最大为j,空字节数是i,分数比率i/j printk(" PC=%08X.", *(1019 + (unsigned long *) p)); //p指向结构体起始地址偏移1019,应该是指数据结构中的TSS结构内EIP处的值(所谓PC指针),eip的值即当前任务用户态的代码指针。 if (p->p_ysptr || p->p_osptr) //假设p进程有同辈的进程。那么打印它们的进程号 printk(" Younger sib=%d, older sib=%d\n\r", p->p_ysptr ? p->p_ysptr->pid : -1, p->p_osptr ?

p->p_osptr->pid : -1); else printk("\n\r"); }

关于show_task讨论的一些帖子

http://www.oldlinux.org/oldlinux/viewthread.php?tid=12182

http://www.oldlinux.org/oldlinux/viewthread.php?

tid=14683


show_task

 //调用show_task,打印全部非空进程的信息 void show_state(void) { int i; printk("\rTask-info:\n\r"); for (i=0;i<NR_TASKS;i++) if (task[i])//扫描task数组。非空即打印相应task[i]进程相关信息 show_task(i,task[i]); } 



              在内核中的调度程序用于选择系统中下一个要执行的进程。

这样的选择执行机制是多任务操作系统的基础。调度程序能够看作为处于执行状态都进程之间分配CPU执行时间的管理代码。

Linux进程是抢占式的。但被抢占的进程仍处于TASK_RUNNING状态,仅仅是临时没有被CPU执行。进程的抢占发生在进程处于用于态执行阶段,在内核态执行时是不能被强制的。(0.12的不能够。貌似如今的能够了)


             schdule()函数首先扫描任务数组,通过比較每一个就绪状态任务的执行时间递减滴答计数counter的值来确定当前哪个进程执行的时间最少,哪个counter值最大。就表示执行时间还不长。于是就选中该进程,并使用任务切换宏函数到该进程执行。

schedule()

 void schedule(void) { int i,next,c; struct task_struct ** p; /* check alarm, wake up any interruptible tasks that have got a signal */ for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)//把p初始化为指向最后一个进程的地址的指针,逆向扫描全部进程 if (*p) {//*p 指向当前进程的指针 if ((*p)->timeout && (*p)->timeout < jiffies) {//这里< 没错,我一直非常纠结为什么不是> 这里jiffies是渐变的,持续变的。而timeout 仅仅是作为一个阈值 (*p)->timeout = 0; //假设当前进程等待非常久了((*p)->timeout < jiffies),而且这个进程处于TASK_INTERRUPTIBLE //我们就把这个进程置与TASK_RUNNING状态 if ((*p)->state == TASK_INTERRUPTIBLE) (*p)->state = TASK_RUNNING; } if ((*p)->alarm && (*p)->alarm < jiffies) { //假设此时jiffies大于alarm信号周期,则让将SIGALRM写入进程的信号位 (*p)->signal |= (1<<(SIGALRM-1)); (*p)->alarm = 0; } if (((*p)->signal & ~(_BLOCKABLE & (*p)->blocked)) && (*p)->state==TASK_INTERRUPTIBLE)// 除SIGKILL SIGSTOP信号外,其它信号都是非堵塞状态的话,而且进程处于TASK_INTERRUPTIBLE (*p)->state=TASK_RUNNING;//我们就把这个进程置与TASK_RUNNING状态 } /* this is the scheduler proper: */ while (1) { c = -1; next = 0; i = NR_TASKS; p = &task[NR_TASKS]; while (--i) {//把全部进程都扫一遍,counter是递减的,找出counter最大的进程,保存在next里面 if (!*--p)//当前*p指向进程为空,下一个 continue; if ((*p)->state == TASK_RUNNING && (*p)->counter > c) //counter是任务执行时间计数。注意处于scheduled状态的进程也是在执行是。仅仅是没有使用CPU而已 c = (*p)->counter, next = i; } if (c) break;//c>0 就说明找到了已经执行一段时间。而且执行时间最短的进程,跳出while(1) for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)//假设c==0,说明全部schedule的进程都没有执行 if (*p) (*p)->counter = ((*p)->counter >> 1) + (*p)->priority; //又一次计算counter = counter/2 + priority } switch_to(next);//让进程next使用CPU } 

《linux 内核全然剖析》sched.c sched.h 代码分析笔记 随笔 第3张


       每当选择出一个新的能够执行的进程时,switch_to()宏执行实际进程切换操作。

该宏会把CPU的当前进程状态(context)切换成新进程的状态。

       在切换之前,switch_to首先检查要切换的进程是否就是当前进程。假设是,啥也别做。直接退出。假设不是,就把内核全局变量current置为新任务的指针。然后ljmp 长跳转到新任务的状态段TSS组成的地址处,造成CPU执行任务切换操作。此时。CPU会把其全部寄存器的状态保存到当前任务寄存器TR中TSS段选择所指向的当前进程任务数据结构。然后把新任务状态段选择符所指向的新任务数据结构tss结构中的寄存器恢复到CPU中,系统正式開始执行新切换的任务。



switch_to


 #define switch_to(n) {\ struct {long a,b;} __tmp; \ __asm__("cmpl %%ecx,_current\n\t" \ //进程n是当前current进程。直接结束switch,否则继续je之后的内容 "je 1f\n\t" \ "movw %%dx,%1\n\t" \ //将新任务的TSS的16选择符号存入 _tmp.b 中 "xchgl %%ecx,_current\n\t" \ //交换ecx 和current的值,这个时候current就是next指向的进程了!

"ljmp %0\n\t" \ // long jump 把控制流跳转到 %0 _tmp 处 这个long jump比較“特别”。一句两句凝视说不清楚, //可能看到这里会疑惑都跳转了,以下的语句还有什么用?实用!

由于会“跳回来” "cmpl %%ecx,_last_task_used_math\n\t" \ // 原任务是否使用过协处理器 "jne 1f\n\t" \//没用过,跳到l,结束 "clts\n" \//用过,清理 "1:" \ //切换TS标识 ::"m" (*&__tmp.a),"m" (*&__tmp.b), \ "d" (_TSS(n)),"c" ((long) task[n])); \ }

为什么会执行这句话

 cmpl %%ecx,_last_task_used_math

既然任务切换时CPU会恢复寄存器现场,那么它当然也会保存寄存器现场了。

这些寄存器现场都会被写入原任务的tss结构里,值得注意的是。EIP会指向引起任务切换指令ljmp的下一条指令cmpl,所以,非常明显,当原任务有朝一日再次被调度执行时,它将从EIP所指的地方,而这个地方恰巧是cmpl !
比較实用的一个帖子:

http://www.oldlinux.org/oldlinux/archiver/?

tid-5390.html





sys_pause

 int sys_pause(void) //把当前进程转换成可中断的等待状态,并又一次调度 { current->state = TASK_INTERRUPTIBLE; schedule(); return 0; }



                                              《linux 内核全然剖析》sched.c sched.h 代码分析笔记 随笔 第4张

__sleep_on

 static inline void __sleep_on(struct task_struct **p, int state) //看的时候一定要记住,这个_sleep_on 的作用就是把当前进程正等待资源响应或者不在内存时先让他schedule一下, //让别的程序先执行一段时间的, //等到自己等待的资源响应之后,这个时候才跳过if推断,执行后面的语句 { struct task_struct *tmp; if (!p)//常规检查p 为0的时候直接返回 return; if (current == &(init_task.task)) //假设当前进程是 panic("task[0] trying to sleep"); tmp = *p;// tmp 指向原等待队列的头指针 *p = current; //*p 指向等待队列的头指针,把current放入等待队列 current->state = state; repeat: schedule(); if (*p && *p != current) { //假设*p是 等待队列的头指针。不进入。否则goto一直反复schedule,直到当前current进程是*p (**p).state = 0; current->state = TASK_UNINTERRUPTIBLE; goto repeat; } if (!*p) printk("Warning: *P = NULL\n\r"); if (*p = tmp) // 恢复原来的等待队列,*p 指向原来的等待队列头,逐出current进程 tmp->state=0; //TASK_RUNNING } 

interruptible_sleep_on

 void interruptible_sleep_on(struct task_struct **p) //可中断睡眠 { __sleep_on(p,TASK_INTERRUPTIBLE); }


sleep_on

 void sleep_on(struct task_struct **p)//不可中断睡眠 { __sleep_on(p,TASK_UNINTERRUPTIBLE); } 

wake_up

 void wake_up(struct task_struct **p)//唤醒进程 { if (p && *p) { if ((**p).state == TASK_STOPPED) printk("wake_up: TASK_STOPPED"); if ((**p).state == TASK_ZOMBIE) printk("wake_up: TASK_ZOMBIE"); (**p).state=0; //TASK_RUNNING } } 


get_pid,getppid,getuid,geteuid,getgid,sys_nice

 int sys_getpid(void) //各种系统调用查看进程相关信息 { return current->pid; } int sys_getppid(void) { return current->p_pptr->pid; } int sys_getuid(void) { return current->uid; } int sys_geteuid(void) { return current->euid; } int sys_getgid(void) { return current->gid; } int sys_getegid(void) { return current->egid; } int sys_nice(long increment) { if(current->priority-increment>0) current->priority -=increment; return 0; }



sched_init

 void sched_init(void)//schedule 的初始化 被main.c 调用,真心之仅仅能大概看懂。非常多初始化设置不知道为什么 { int i; struct desc_struct * p; if (sizeof(struct sigaction) !=16) panic("Struct sigactionMUST be 16 bytes"); set_tss_desc(gdt+FIRST_TSS_ENTRY,&(init_task.task.tss)); set_ldt_desc(gdt+FIRST_LDT_ENTRY,&(init_task.task.ldt)); p = gdt+2+FIRST_TSS_ENTRY; for(i=1;i<NR_TASKS;i++) { //从1開始,跳过了进程init。保护好刚已经设置好的init_task //任务清零。描写叙述符清零 task[i] = NULL; p->a=p->b=0; //偏址清零 p++; p->a=p->b=0; //TSS 清零 p++; } /* Clear NT, so that we won't have troubles with that later on */ //从这里我就不知道发生鸟神马。。。

T-T __asm__("pushfl ; andl$0xffffbfff,(%esp) ; popfl"); ltr(0); lldt(0); outb_p(0x36,0x43); /* binary, mode 3, LSB/MSB, ch 0 */ outb_p(LATCH & 0xff , 0x40); /* LSB */ outb(LATCH >> 8 , 0x40); /* MSB */ set_intr_gate(0x20,&timer_interrupt); outb(inb_p(0x21)&~0x01,0x21); set_system_gate(0x80,&system_call); }






《linux 内核全然剖析》sched.c sched.h 代码分析笔记 随笔 第5张

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄