http://www.inference.org.uk/mackay/itprnn/

 

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

http://videolectures.net/course_information_theory_pattern_recognition/

 

[Information Theory] L1: Introduction to Information Theory 随笔 第1张

 

[Information Theory] L1: Introduction to Information Theory 随笔 第2张

 

1948, Shanon's fundamental problem: Reliable communication over an unreliable channel

 

eg:

 

[Information Theory] L1: Introduction to Information Theory 随笔 第3张

 

 

[Information Theory] L1: Introduction to Information Theory 随笔 第4张

 

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第5张

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第6张

 

change the physics: replace equipment with a better one. 

system solution: add encoding and decoding 

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第7张[Information Theory] L1: Introduction to Information Theory 随笔 第8张[Information Theory] L1: Introduction to Information Theory 随笔 第9张

 

 hat means a guess

 

s -> \hat{s}

 

toy example: binary symmetric channel

 

[Information Theory] L1: Introduction to Information Theory 随笔 第10张

 

[Information Theory] L1: Introduction to Information Theory 随笔 第11张

 

 

[Information Theory] L1: Introduction to Information Theory 随笔 第12张

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第13张

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第14张

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第15张

 [Information Theory] L1: Introduction to Information Theory 随笔 第16张

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第17张

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第18张

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第19张

partity coding: even->0 for p; odd->1 for p

 

 

[Information Theory] L1: Introduction to Information Theory 随笔 第20张

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第21张

 

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第22张

 

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第23张

 

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第24张

 

 

 

[Information Theory] L1: Introduction to Information Theory 随笔 第25张

 

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第26张

\hat{s} = 0 1 1 1 1

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第27张

 

 

why the majority vote decoder is the best?

 

[Information Theory] L1: Introduction to Information Theory 随笔 第28张

 

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第29张

 

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第30张

 

 

[Information Theory] L1: Introduction to Information Theory 随笔 第31张

 

 

 

[Information Theory] L1: Introduction to Information Theory 随笔 第32张[Information Theory] L1: Introduction to Information Theory 随笔 第33张

 

 

 

[Information Theory] L1: Introduction to Information Theory 随笔 第34张

 

 

[Information Theory] L1: Introduction to Information Theory 随笔 第35张

 

 

  [Information Theory] L1: Introduction to Information Theory 随笔 第36张

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第37张

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第38张

 

 

[Information Theory] L1: Introduction to Information Theory 随笔 第39张

 

 answer: 61

 

 

[Information Theory] L1: Introduction to Information Theory 随笔 第40张

 

 

74 hamming code

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第41张

 

 

[Information Theory] L1: Introduction to Information Theory 随笔 第42张

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第43张

encoder: even for 0 and odd for 1

 

 

decoder:

 

[Information Theory] L1: Introduction to Information Theory 随笔 第44张

the second one got flipped but we dont know yet.

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第45张

 

 

[Information Theory] L1: Introduction to Information Theory 随笔 第46张

t = 1000101

 

any single flip can be detected and corrected, but if >1, then in trouble

 

[Information Theory] L1: Introduction to Information Theory 随笔 第47张

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第48张

 

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第49张

 

 

 Shanon proved that you can  get the error probability arbitrarily small , without the rate having to go to zero

and the boundary between achievable and unachievable is the green line

 

 C is the capacity

 

[Information Theory] L1: Introduction to Information Theory 随笔 第50张

 

 

[Information Theory] L1: Introduction to Information Theory 随笔 第51张

 

 binary symmetric channel : bsc

 

binary entropy function

 

eg, f=0.1 => H2f = 0.53 => only two disk in the box and there exists an encoding system and a decoding system that can correct as many errors as you want (< all errors).

=> shanon's noisy channel coding theorem

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第52张

 

[Information Theory] L1: Introduction to Information Theory 随笔 第53张

 

 

 [Information Theory] L1: Introduction to Information Theory 随笔 第54张

 

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄