吴裕雄 python 神经网络——TensorFlow 变量管理
import tensorflow as tf with tf.variable_scope("foo"): v = tf.get_variable("v", [1], initializer=tf.constant_initializer(1.0)) #with tf.variable_scope("foo"): # v = tf.get_variable("v", [1]) with tf.variable_scope("foo", reuse=True): v1 = tf.get_variable("v", [1]) print(v == v1) #with tf.variable_scope("bar", reuse=True): # v = tf.get_variable("v", [1])
with tf.variable_scope("root"): print(tf.get_variable_scope().reuse) with tf.variable_scope("foo", reuse=True): print(tf.get_variable_scope().reuse) with tf.variable_scope("bar"): print(tf.get_variable_scope().reuse) print(tf.get_variable_scope().reuse)SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。
v1 = tf.get_variable("v", [1]) print(v1.name) with tf.variable_scope("foo",reuse=True): v2 = tf.get_variable("v", [1]) print(v2.name) with tf.variable_scope("foo"): with tf.variable_scope("bar"): v3 = tf.get_variable("v", [1]) print(v3.name) v4 = tf.get_variable("v1", [1]) print(v4.name)
with tf.variable_scope("",reuse=True): v5 = tf.get_variable("foo/bar/v", [1]) print(v5 == v3) v6 = tf.get_variable("v1", [1]) print(v6 == v4)

更多精彩