五分钟轻松了解Hbase面向列的存储

[置顶] 五分钟轻松了解Hbase面向列的存储

说明:从严格的列式存储的定义来看,Hbase并不属于列式存储,有人称它为面向列的存储,请各位看官注意这一点。 行式存储 传统的数据库是关...

OpenTSDB/HBase的调优过程整理

[置顶] OpenTSDB/HBase的调优过程整理

背景 过年前,寂寞哥给我三台机器,说搞个新的openTSDB集群。机器硬件是8核16G内存、3个146G磁盘做数据盘。 我说这太抠了,寂寞哥说之前的TS...

亿级 ELK 日志平台构建部署实践

[置顶] 亿级 ELK 日志平台构建部署实践

本篇主要讲工作中的真实经历,我们怎么打造亿级日志平台,同时手把手教大家建立起这样一套亿级 ELK 系统。日志平台具体发展历程...

HBase数据压缩编码探索

[置顶] HBase数据压缩编码探索

摘要: 本文主要介绍了hbase对数据压缩,编码的支持,以及云hbase在社区基础上对数据压缩率和访问速度上了进行的改进。前言你可曾遇到这种需求,...

Ambari2.7.3 和HDP3.1.0搭建Hadoop集群

[置顶] Ambari2.7.3 和HDP3.1.0搭建Hadoop集群

一、环境及软件准备 1、集群规划...

Ambari2.6.2 HDP2.6.5 大数据集群搭建

[置顶] Ambari2.6.2 HDP2.6.5 大数据集群搭建

Ambari 2.6.2 中 HDFS-2.7.3 YARN-2.7.3 HIVE-1.2.1 HBASE-1.1.2 ZOOKEEPER-3.4.6 SP...

hadoop-2.7.7 HA完全分布式集群部署详解

[置顶] hadoop-2.7.7 HA完全分布式集群部署详解

1.Hadoop HA简介及工作原理Hadoop NameNode官方开始支持HA集群默认是从2.0开始,之前的版本均是不支持NameNode HA的高可用...

可怕的黑暗料理之暗黑谷歌搜索神器

[置顶] 可怕的黑暗料理之暗黑谷歌搜索神器

1.暗黑谷歌的由来 有这么一款搜索引擎,它一刻不停的在寻找着所有和互联网关联的PLC、摄像头、红绿灯、打印机、路由器、交换机、服务器、数据库等等各种软硬件...

Oracle12c跨平台迁移之linux至windows

[置顶] Oracle12c跨平台迁移之linux至windows

近期应朋友邀请协助处理一起oracle数据库跨平台迁移的项目,需求为迁移centos 7.2 linux的oracle12.2数据库至windo...

分类算法

分类算法

分类算法 二分类 线性支持向量机,Logistic回归,决策树,随机森林,梯度上升树,朴素贝叶斯 多类分类 Logi...

基本数据类型(二)

基本数据类型(二)

1. 列表   列表是 Python 最常用的数据类型,它是有序元素的集合,元素之间以逗号分隔,用中括号括起来,可以是任何数据类型。同时它也是一种序列,支...

MATLAB机器人系统工具箱入门-小车

MATLAB机器人系统工具箱入门-小车

小车工作空间用OccupancyGrid表示,其实就是栅格 可以用robotics.BinaryOccupancyGrid表示(Bin...

深度学习概述

深度学习概述

强化学习   强化学习能解决的问题:序贯决策问题   序贯决策问题:连续不断的作出决策,才能实现最终目标的问题。     强化学习如何解决...

基础算法——二分

基础算法——二分

  上次我们讲了贪心,上题: 题目描述: RFdragon摘了n种果子,每种果子堆成一堆,现在RFdragon打算将所有果子运回家,因此决定将所有果子...

实验报告(2019年4月30日)下半部分

实验报告(2019年4月30日)下半部分

c程序实验报告 姓名:黄志乾    实验地点:教学楼514教室    实...

算法基础与开发流程

算法基础与开发流程

# coding = utf-8 from sklearn import datasets from sklearn.datasets import l...

特征预处理

特征预处理

# coding=utf-8 from sklearn.preprocessing import MinMaxScaler from sklearn.p...

省选前模板复习

省选前模板复习

PREFACE 也许是OI生涯最后一场正式比赛了,说是省选前模板,其实都是非常基础的东西,穿插了英文介绍和部分代码实现 祝各位参加JXOI2019的都加...

LeetCode 279. 完全平方数(Perfect Squares) 7

LeetCode 279. 完全平方数(Perfect Squares) 7

279. 完全平方数 279. Perfect Squares 题目描述 给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使...

基于AliOS的车载小程序

基于AliOS的车载小程序

4月16日上海国际车展首日,阿里巴巴表示正在研发基于AliOS的车载小程序。同时还展出AI HUD、AI驾驶舱等最新技术,AliOS表示正在构建一个可持续发...

最短路(三种算法)

最短路(三种算法)

蒟蒻最近在不断AK最短路 这篇博客就发一下最基础的三种做法(以后会发一篇升级版的) 1.大名鼎鼎的Floyd 2.Dijkstra 3.Bellma...

User Login