本节主要记录一下列表生成式,生成器和迭代器的知识点

  列表生成器

  首先举个例子

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

现在有个需求,看列表 [0,1,2,3,4,5,6,7,8,9],要求你把列表里面的每个值加1,你怎么实现呢?

方法一(简单):

1 2 3 4 5 6 7 8 9 info  =  [ 0 1 2 3 4 5 6 7 8 9 ] =  [] # for index,i in enumerate(info): #     print(i+1) #     b.append(i+1) # print(b) for  index,i  in  enumerate (info):      info[index]  + = 1 print (info)

方法二(一般):

1 2 3 4 5 info  =  [ 0 1 2 3 4 5 6 7 8 9 ] =  map ( lambda  x:x + 1 ,info) print (a) for  in  a:      print (i)

方法三(高级):

1 2 3 info  =  [ 0 1 2 3 4 5 6 7 8 9 ] =  [i + 1  for  in  range ( 10 )] print (a)

  生成器

什么是生成器?

  通过列表生成式,我们可以直接创建一个列表,但是,受到内存限制,列表容量肯定是有限的,而且创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

  所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间,在Python中,这种一边循环一边计算的机制,称为生成器:generator

  生成器是一个特殊的程序,可以被用作控制循环的迭代行为,python中生成器是迭代器的一种,使用yield返回值函数,每次调用yield会暂停,而可以使用next()函数和send()函数恢复生成器。

  生成器类似于返回值为数组的一个函数,这个函数可以接受参数,可以被调用,但是,不同于一般的函数会一次性返回包括了所有数值的数组,生成器一次只能产生一个值,这样消耗的内存数量将大大减小,而且允许调用函数可以很快的处理前几个返回值,因此生成器看起来像是一个函数,但是表现得却像是迭代器

python中的生成器

  要创建一个generator,有很多种方法,第一种方法很简单,只有把一个列表生成式的[]中括号改为()小括号,就创建一个generator

  举例如下:

1 2 3 4 5 6 7 8 9 10 #列表生成式 lis  =  [x * for  in  range ( 10 )] print (lis) #生成器 generator_ex  =  (x * for  in  range ( 10 )) print (generator_ex)   结果: [ 0 1 4 9 16 25 36 49 64 81 ] <generator  object  <genexpr> at  0x000002A4CBF9EBA0 >

  那么创建lis和generator_ex,的区别是什么呢?从表面看就是[  ]和(),但是结果却不一样,一个打印出来是列表(因为是列表生成式),而第二个打印出来却是<generator object <genexpr> at 0x000002A4CBF9EBA0>,那么如何打印出来generator_ex的每一个元素呢?

  如果要一个个打印出来,可以通过next()函数获得generator的下一个返回值:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 #生成器 generator_ex  =  (x * for  in  range ( 10 )) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) print ( next (generator_ex)) 结果: 0 1 4 9 16 25 36 49 64 81 Traceback (most recent call last):      File  "列表生成式.py" , line  42 in  <module>        print ( next (generator_ex))   StopIteration

  大家可以看到,generator保存的是算法,每次调用next(generaotr_ex)就计算出他的下一个元素的值,直到计算出最后一个元素,没有更多的元素时,抛出StopIteration的错误,而且上面这样不断调用是一个不好的习惯,正确的方法是使用for循环,因为generator也是可迭代对象:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 #生成器 generator_ex  =  (x * for  in  range ( 10 )) for  in  generator_ex:      print (i)       结果: 0 1 4 9 16 25 36 49 64 81

  所以我们创建一个generator后,基本上永远不会调用next(),而是通过for循环来迭代,并且不需要关心StopIteration的错误,generator非常强大,如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如著名的斐波那契数列,除第一个和第二个数外,任何一个数都可以由前两个相加得到:

1,1,2,3,5,8,12,21,34.....

斐波那契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

1 2 3 4 5 6 7 8 9 10 11 #fibonacci数列 def fib(max):      n,a,b =0,0,1      while  n < max:          a,b =b,a+b          n = n+1          print(a)      return  'done'   a = fib(10) print(fib(10))

 

  a,b = b ,a+b  其实相当于 t =a+b ,a =b ,b =t  ,所以不必写显示写出临时变量t,就可以输出斐波那契数列的前N个数字。上面输出的结果如下:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 1 2 3 5 8 13 21 34 55 1 1 2 3 5 8 13 21 34 55 done

  仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

  也就是说上面的函数也可以用generator来实现,上面我们发现,print(b)每次函数运行都要打印,占内存,所以为了不占内存,我们也可以使用生成器,这里叫yield。如下:

1 2 3 4 5 6 7 8 9 10 def  fib( max ):      n,a,b  = 0 , 0 , 1      while  n <  max :          yield  b          a,b  = b,a + b          =  n + 1      return  'done'   =  fib( 10 ) print (fib( 10 ))

  但是返回的不再是一个值,而是一个生成器,和上面的例子一样,大家可以看一下结果:

1 <generator  object  fib at  0x000001C03AC34FC0 >

  那么这样就不占内存了,这里说一下generator和函数的执行流程,函数是顺序执行的,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次被next()调用时候从上次的返回yield语句处急需执行,也就是用多少,取多少,不占内存。

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 def  fib( max ):      n,a,b  = 0 , 0 , 1      while  n <  max :          yield  b          a,b  = b,a + b          =  n + 1      return  'done'   =  fib( 10 ) print (fib( 10 )) print (a.__next__()) print (a.__next__()) print (a.__next__()) print ( "可以顺便干其他事情" ) print (a.__next__()) print (a.__next__())   结果: <generator  object  fib at  0x0000023A21A34FC0 > 1 1 2 可以顺便干其他事情 3 5

  在上面fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 def  fib( max ):      n,a,b  = 0 , 0 , 1      while  n <  max :          yield  b          a,b  = b,a + b          =  n + 1      return  'done' for  in  fib( 6 ):      print (i)       结果: 1 1 2 3 5 8

  但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果拿不到返回值,那么就会报错,所以为了不让报错,就要进行异常处理,拿到返回值,如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 def  fib( max ):      n,a,b  = 0 , 0 , 1      while  n <  max :          yield  b          a,b  = b,a + b          =  n + 1      return  'done' =  fib( 6 ) while  True :      try :          =  next (g)          print ( 'generator: ' ,x)      except  StopIteration as e:          print ( "生成器返回值:" ,e.value)          break     结果: generator:   1 generator:   1 generator:   2 generator:   3 generator:   5 generator:   8 生成器返回值: done

还可以通过yield实现在单线程的情况下实现并发运算的效果

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 import  time def  consumer(name):      print ( "%s 准备学习啦!"  % name)      while  True :         lesson  =  yield           print ( "开始[%s]了,[%s]老师来讲课了!"  % (lesson,name))     def  producer(name):      =  consumer( 'A' )      c2  =  consumer( 'B' )      c.__next__()      c2.__next__()      print ( "同学们开始上课 了!" )      for  in  range ( 10 ):          time.sleep( 1 )          print ( "到了两个同学!" )          c.send(i)          c2.send(i)   结果: A 准备学习啦! B 准备学习啦! 同学们开始上课 了! 到了两个同学! 开始[ 0 ]了,[A]老师来讲课了! 开始[ 0 ]了,[B]老师来讲课了! 到了两个同学! 开始[ 1 ]了,[A]老师来讲课了! 开始[ 1 ]了,[B]老师来讲课了! 到了两个同学! 开始[ 2 ]了,[A]老师来讲课了! 开始[ 2 ]了,[B]老师来讲课了! 到了两个同学! 开始[ 3 ]了,[A]老师来讲课了! 开始[ 3 ]了,[B]老师来讲课了! 到了两个同学! 开始[ 4 ]了,[A]老师来讲课了! 开始[ 4 ]了,[B]老师来讲课了! 到了两个同学! 开始[ 5 ]了,[A]老师来讲课了! 开始[ 5 ]了,[B]老师来讲课了! 到了两个同学! 开始[ 6 ]了,[A]老师来讲课了! 开始[ 6 ]了,[B]老师来讲课了! 到了两个同学!

  由上面的例子我么可以发现,python提供了两种基本的方式

   生成器函数:也是用def定义的,利用关键字yield一次性返回一个结果,阻塞,重新开始

   生成器表达式:返回一个对象,这个对象只有在需要的时候才产生结果

——生成器函数

为什么叫生成器函数?因为它随着时间的推移生成了一个数值队列。一般的函数在执行完毕之后会返回一个值然后退出,但是生成器函数会自动挂起,然后重新拾起急需执行,他会利用yield关键字关起函数,给调用者返回一个值,同时保留了当前的足够多的状态,可以使函数继续执行,生成器和迭代协议是密切相关的,迭代器都有一个__next__()__成员方法,这个方法要么返回迭代的下一项,要买引起异常结束迭代。

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 # 函数有了yield之后,函数名+()就变成了生成器 # return在生成器中代表生成器的中止,直接报错 # next的作用是唤醒并继续执行 # send的作用是唤醒并继续执行,发送一个信息到生成器内部 '''生成器'''   def  create_counter(n):      print ( "create_counter" )      while  True :          yield  n          print ( "increment n" )          + = 1   gen  =  create_counter( 2 ) print (gen) print ( next (gen)) print ( next (gen))   结果: <generator  object  create_counter at  0x0000023A1694A938 > create_counter 2 increment n 3 Process finished with exit code  0

  

——生成器表达式

生成器表达式来源于迭代和列表解析的组合,生成器和列表解析类似,但是它使用尖括号而不是方括号

1 2 3 4 5 6 7 8 9 10 >>>  # 列表解析生成列表 >>> [ x  * *  3  for  in  range ( 5 )] [ 0 1 8 27 64 ] >>> >>>  # 生成器表达式 >>> (x  * *  3  for  in  range ( 5 )) <generator  object  <genexpr> at  0x000000000315F678 > >>>  # 两者之间转换 >>>  list (x  * *  3  for  in  range ( 5 )) [ 0 1 8 27 64 ]

  一个迭代既可以被写成生成器函数,也可以被协程生成器表达式,均支持自动和手动迭代。而且这些生成器只支持一个active迭代,也就是说生成器的迭代器就是生成器本身。

迭代器(迭代就是循环)

  迭代器包含有next方法的实现,在正确的范围内返回期待的数据以及超出范围后能够抛出StopIteration的错误停止迭代。

  我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如list,tuple,dict,set,str等

一类是generator,包括生成器和带yield的generator function

这些可以直接作用于for 循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否为可Iterable对象

1 2 3 4 5 6 7 8 9 10 11 >>>  from  collections  import  Iterable >>>  isinstance ([], Iterable) True >>>  isinstance ({}, Iterable) True >>>  isinstance ( 'abc' , Iterable) True >>>  isinstance ((x  for  in  range ( 10 )), Iterable) True >>>  isinstance ( 100 , Iterable) False

  而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

所以这里讲一下迭代器

一个实现了iter方法的对象时可迭代的,一个实现next方法的对象是迭代器

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

可以使用isinstance()判断一个对象是否是Iterator对象:

1 2 3 4 5 6 7 8 9 >>>  from  collections  import  Iterator >>>  isinstance ((x  for  in  range ( 10 )), Iterator) True >>>  isinstance ([], Iterator) False >>>  isinstance ({}, Iterator) False >>>  isinstance ( 'abc' , Iterator) False

  

生成器都是Iterator对象,但listdictstr虽然是Iterable(可迭代对象),却不是Iterator(迭代器)

listdictstrIterable变成Iterator可以使用iter()函数

1 2 3 4 >>>  isinstance ( iter ([]), Iterator) True >>>  isinstance ( iter ( 'abc' ), Iterator) True

  

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

  判断下列数据类型是可迭代对象or迭代器

1 2 3 4 5 6 s = 'hello' l = [ 1 , 2 , 3 , 4 ] t = ( 1 , 2 , 3 ) d = { 'a' : 1 } set = { 1 , 2 , 3 } f = open ( 'a.txt' )

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 s= 'hello'      #字符串是可迭代对象,但不是迭代器 l=[1,2,3,4]     #列表是可迭代对象,但不是迭代器 t=(1,2,3)       #元组是可迭代对象,但不是迭代器 d={ 'a' :1}        #字典是可迭代对象,但不是迭代器 set ={1,2,3}     #集合是可迭代对象,但不是迭代器 # ************************************* f=open( 'test.txt' ) #文件是可迭代对象,是迭代器   #如何判断是可迭代对象,只有__iter__方法,执行该方法得到的迭代器对象。 # 及可迭代对象通过__iter__转成迭代器对象 from  collections import Iterator  #迭代器 from  collections import Iterable  #可迭代对象   print(isinstance(s,Iterator))     #判断是不是迭代器 print(isinstance(s,Iterable))       #判断是不是可迭代对象   #把可迭代对象转换为迭代器 print(isinstance(iter(s),Iterator))

 

 注意:文件的判断

1 2 3 4 5 6 7 8 9 f = open( 'housing.csv' ) from  collections import Iterator from  collections import Iterable   print(isinstance(f,Iterator)) print(isinstance(f,Iterable))   True True

  结论:文件是可迭代对象,也是迭代器

 

小结:

  • 凡是可作用于for循环的对象都是Iterable类型;
  • 凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
  • 集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python3的for循环本质上就是通过不断调用next()函数实现的,例如:

1 2 for  in  [ 1 2 3 4 5 ]:      pass

 实际上完全等价于

1 2 3 4 5 6 7 8 9 10 # 首先获得Iterator对象: it  =  iter ([ 1 2 3 4 5 ]) # 循环: while  True :      try :          # 获得下一个值:          =  next (it)      except  StopIteration:          # 遇到StopIteration就退出循环          break

  

对yield的总结

  (1)通常的for..in...循环中,in后面是一个数组,这个数组就是一个可迭代对象,类似的还有链表,字符串,文件。他可以是a = [1,2,3],也可以是a = [x*x for x in range(3)]。

它的缺点也很明显,就是所有数据都在内存里面,如果有海量的数据,将会非常耗内存。

  (2)生成器是可以迭代的,但是只可以读取它一次。因为用的时候才生成,比如a = (x*x for x in range(3))。!!!!注意这里是小括号而不是方括号。

  (3)生成器(generator)能够迭代的关键是他有next()方法,工作原理就是通过重复调用next()方法,直到捕获一个异常。

  (4)带有yield的函数不再是一个普通的函数,而是一个生成器generator,可用于迭代

  (5)yield是一个类似return 的关键字,迭代一次遇到yield的时候就返回yield后面或者右面的值。而且下一次迭代的时候,从上一次迭代遇到的yield后面的代码开始执行

  (6)yield就是return返回的一个值,并且记住这个返回的位置。下一次迭代就从这个位置开始。

  (7)带有yield的函数不仅仅是只用于for循环,而且可用于某个函数的参数,只要这个函数的参数也允许迭代参数。

  (8)send()和next()的区别就在于send可传递参数给yield表达式,这时候传递的参数就会作为yield表达式的值,而yield的参数是返回给调用者的值,也就是说send可以强行修改上一个yield表达式值。

  (9)send()和next()都有返回值,他们的返回值是当前迭代遇到的yield的时候,yield后面表达式的值,其实就是当前迭代yield后面的参数。

  (10)第一次调用时候必须先next()或send(None),否则会报错,send后之所以为None是因为这时候没有上一个yield,所以也可以认为next()等同于send(None);

     send() 也可以让生成器向下执行一次, 给上一个yield传一个值, 第一个不能用send(). 最后一个也不要传值
  
def eat():
    print("我吃什么啊")
    a =  yield  "馒头"
    print("a=",a)
    b =  yield  a
    print("b=",b)
    c =  yield  "韭菜盒子"
    print("c=",c)
    yield  "GAME OVER"

gen = eat()      # 获取⽣成器

ret1 = gen. __next__ ()
print(ret1) 
ret2 = gen.send("胡辣汤")
print(ret2)
ret3 = gen.send("狗粮")
print(ret3)
ret4 = gen.send("猫粮")
print(ret4)

# 我吃什么啊
# 馒头
# a= 胡辣汤
# 胡辣汤
# b= 狗粮
# 韭菜盒子
# c= 猫粮
# GAME OVER

 

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄