Push-DIGing Algorithm

For $k=0,1,2, \cdots$ do

SRE实战 互联网时代守护先锋,助力企业售后服务体系运筹帷幄!一键直达领取阿里云限量特价优惠。

      $\mathbf{u}(k+1)=\mathbf{C}(k)(\mathbf{u}(k)-\alpha \mathbf{y}(k))$

      $\mathbf{v}(k+1)=\mathbf{C}(k) \mathbf{v}(k) ; \mathbf{V}(k+1)=\operatorname{diag}\{\mathbf{v}(k+1)\}$

      $\mathbf{x}(k+1)=(\mathbf{V}(k+1))^{-1} \mathbf{u}(k+1)$

      $\mathbf{y}(k+1)=\mathbf{C}(k) \mathbf{y}(k)+\nabla \mathbf{f}(\mathbf{x}(k+1))-\nabla \mathbf{f}(\mathbf{x}(k))$

end for

 假设1:B连通性假设

         $G^{dir}_{\tilde{B}_{\ominus}}(t\tilde{B}_{\ominus}) \triangleq $ $\{ V, \cup^{(t+1)\tilde{B}_{\ominus}-1}_{l=t \tilde{B}_{\ominus}}A(l)\}$

假设2:混合矩阵假设

         $C_{i j}(k)=\frac{1}{d_{j}^{\mathrm{out}}(k)+1}$ ,otherwise $C_{ij}(k)=0$

 变换算法:

   $\mathbf{v}(k+1)=\mathbf{C}(k) \mathbf{v}(k), \mathbf{V}(k+1)=\operatorname{diag}\{\mathbf{v}(k+1)\}$

   $ \mathbf{x}(k+1)=\widetilde{\mathbf{R}}(k)(\mathbf{x}(k)-\alpha \mathbf{h}(k))$

   $\mathbf{h}(k+1)=\widetilde{\mathbf{R}}(k) \mathbf{h}(k)+(\mathbf{V}(k+1))^{-1}(\nabla \mathbf{f}(\mathbf{x}(k+1))-\nabla \mathbf{f}(\mathbf{x}(k)))$

 

扫码关注我们
微信号:SRE实战
拒绝背锅 运筹帷幄